- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Business Development Office
- Partnering opportunities
- A complete cure for HBV
- A stable efficacious Toxoplasma vaccine
- Activating SMCHD1 to treat FSHD
- Improving vision outcomes in retinal detachment
- Intercepting inflammation with RIPK2 inhibitors
- Novel inhibitors for the treatment of lupus
- Novel malaria vaccine
- Novel mucolytics for the treatment of respiratory diseases
- Precision epigenetics silencing SMCHD1 to treat Prader Willi Syndrome
- Rethinking CD52 a therapy for autoimmune disease
- Targeting minor class splicing
- Partnerships and collaborations
- Royalties distribution
- Start-up companies
- Collaborators
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- People
- Anne-Laure Puaux
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Emma Josefsson
- Associate Professor Ethan Goddard-Borger
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Murphy
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Leanne Robinson
- Associate Professor Marco Herold Marco Herold
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Sant-Rayn Pasricha
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Wai-Hong Tham
- Associate Professor Wei Shi
- Catherine Parker
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gemma Kelly
- Dr Gwo Yaw Ho
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Joanna Groom
- Dr John Wentworth
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Melissa Call
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Simon Chatfield
- Dr Tracy Putoczki
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Gabrielle Belz
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Burgess
- Professor Tony Papenfuss
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Undergraduate
- Student research projects
- A new regulator of stemness to create dendritic cell factories for immunotherapy
- Advanced methods for genomic rearrangement detection
- Control of cytokine signaling by SOCS1
- Defining the protein modifications associated with respiratory disease
- Delineating the pathways driving cancer development and therapy resistance
- Developing a new drug that targets plasmacytoid dendritic cells for the treatment of lupus
- Development and mechanism of action of novel antimalarials
- Development of a novel particle-based malaria vaccine
- Development of tau-specific therapeutic and diagnostic antibodies
- Discovering novel therapies for major human pathogens
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Epigenetic biomarkers of tuberculosis infection
- Essential role of glycobiology in malaria parasites
- Evolution of haematopoiesis in vertebrates
- Human lung protective immunity to tuberculosis
- Identifying novel treatment options for ovarian carcinosarcoma
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of mutant p53 in cancer
- Microbiome strain-level analysis using long read sequencing
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Modelling spatial and demographic heterogeneity of malaria transmission risk
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Structural basis of catenin-independent Wnt signalling
- Structure and biology of proteins essential for Toxoplasma parasite invasion
- T lymphocytes: how memories are made
- TICKER: A cell history recorder for longitudinal patient monitoring
- Targeting host pathways to develop new broad-spectrum antiviral drugs
- Targeting post-translational modifications to disrupting the function of secreted proteins
- Targeting the epigenome to rewire pro-allergic T cells
- Targeting the immune microenvironment to treat KRAS-mutant adenocarcinoma
- The E3 ubiquitin ligase Parkin and mitophagy in Parkinson’s disease
- The molecular controls on dendritic cell development
- Understanding malaria infection dynamics
- Understanding the genetics of neutrophil maturation
- Understanding the neuroimmune regulation of innate immunity
- Understanding the proteins that regulate programmed cell death at the molecular level
- Using cutting-edge single cell tools to understand the origins of cancer
- When healthy cells turn bad: how immune responses can transition to lymphoma
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
DNA gets away: scientists catch the rogue molecule that can trigger autoimmunity
24 February 2018
and Dr Niall Geoghegan (L-R) in front of the Institute's
lattice light-sheet microscope.
A research team has discovered the process – and filmed the actual moment – that can change the body’s response to a dying cell. Importantly – what they call the ‘Great Escape’ moment may one day prove to be the crucial trigger for autoimmune diseases like arthritis.
The research team discovered – and filmed – the exact moment when DNA escapes out of the mitochondria during cell death.
The study, published in Science, was led by Professor Benjamin Kile from Monash University’s Biomedicine Discovery Institute (BDI) and was a collaboration between the Walter and Eliza Hall Institute and Monash BDI, with the Howard Hughes Medical Institute (HHMI) Janelia Research Campus, US.
Mitochondria – the cell machinery that produce energy – are the ultimate double agent; they are essential to keep cells alive but, when damaged, they can trigger the body’s own immune system with potentially devastating consequences. The DNA inside mitochondria (mtDNA) has many similarities with bacterial DNA, and the body reacts to its presence outside the mitochondria, or indeed outside the cell, as if under attack from invading pathogens. A similar failure to distinguish ‘self’ from ‘non-self’ underlies inflammatory and autoimmune diseases.
New technology captures Great Escape
While the release of mtDNA is thought to contribute to autoimmune diseases such as lupus, how it escapes from the mitochondria has never been explained. Monash BDI researcher Dr Kate McArthur, while completing her PhD at the Walter and Eliza Hall Institute, and Institute co-author Dr Lachlan Whitehead used a revolutionary new microscope to capture the moment when mitochondria form a ‘hernia’ that balloons out of the mitochondria, expelling the DNA into the rest of the cell.
The live-cell lattice light-sheet microscope – developed by Nobel Prize winner Eric Betzig – is a new technique that allows scientists to observe living cells at groundbreaking resolution.
Dr McArthur, who traveled to the HHMI Janelia Research Campus multiple times between 2015 and 2017, remembers the moment when she witnessed, for the first time, the mitochondria actively expelling its DNA.
“As scientists, we are taught to be quite skeptical when we see something unexpected, so I think my initial reaction was “No way…”.
“It was only after I had carefully repeated the experiment many times that I began to realise what we had found,” she said.
A revolution in microscopy
With the lattice light-sheet microscope researchers can watch the inner workings of living cells with unprecedented detail and in ‘real time’; a groundbreaking achievement that has enabled research that – until now – was simply not possible.
Institute researchers Dr Lachlan Whitehead, Dr Niall Geoghegan and Dr Kelly Rogers, who were co-authors on the paper, spent seven months building the Institute’s lattice light-sheet microscope. It is the only custom-built microscope of its kind in Australia and was used in the final stages of the project.
Without the lattice light-sheet microscope technology, this research would not have been possible, Dr Rogers said.
“Imagine looking at a picture from the AFL Grand Final and trying to understand what happened from that one picture that captures one second of the game. It isn’t possible.
“With the lattice light-sheet, we can watch the whole match in real time and in high definition. It is a game changer,” Dr Rogers said.
Collateral damage
Professor Kile said when a cell committed suicide – a normal part of the human body’s balancing act to control blood cell numbers – two proteins called BAK and BAX were triggered.
“What we witnessed – in real time – was these professional killer proteins opening up huge ‘macropores’ in the outer membrane of the mitochondria, leading the inner contents to herniate out, and bringing the mtDNA with it,” Professor Kile said.
“BAK and BAX deliver the ‘kill shot’ designed to permanently disable the cell. But in doing that, mtDNA is lost from the mitochondria. In essence, this is collateral damage, which, if it isn’t controlled properly, triggers the immune system to drive pathological inflammation,” he said.
The discovery was cemented by images captured by Monash University’s Titan Krios cryo-electron microscope, currently the most advanced microscope for biological electron microscopy, and the Walter and Eliza Hall Institute’s new, custom-built lattice light-sheet microscope.
Collaboration answers fundamental questions
Professor Kile said fundamental discoveries such as this were rare, and this one had profound implications for the understanding of a wide range of autoimmune diseases and infections.
“This has been a brilliant collaboration – between Monash’s Biomedicine Discovery Institute, the Walter and Eliza Hall Institute of Medical Research here in Melbourne and the Janelia Research Campus in the US – which has brought together cutting-edge technologies and first-class expertise to address questions that, before now, had never been asked, and would have been impossible to answer,” Professor Kile said.
The research team also included Institute scientists Dr Mark van Delft and Associate Professor Guillaume Lessene, and was initiated by Professor Kile and Dr McArthur while at the Institute. Dr McArthur was enrolled as a PhD student at the Institute through the University of Melbourne’s Department of Medical Biology. The research was supported by the Australian National Health and Medical Research Council, the Australian Cancer Research Foundation and the Victorian Government.
Media enquiries
M: +61 475 751 811
E: communityrelations@wehi.edu.au
Super Content:
Want to hear about our latest discoveries? Subscribe to our supporter newsletter, Illuminate.
Our scientists have discovered how dying cells are hidden from the immune ‘police’ that patrol the body.