- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
John Silke-Projects
Researcher:
The use of IAP antagonists to treat cancer
We are taking several approaches to explore the best way that IAP antagonists can be used in the clinic to treat cancer. This is an area of intense research world-wide but we have unique advantages including:
- Access to amazing patient-derived xenograft resources.
- A longstanding collaboration with TetraLogic Pharamceuticals Corporation which is developing birinapant, an IAP-antagonist, in clinical trials.
- The institute’s high throughput screening facility.
Using these reagents we are looking for the cancer types most responsive to birinapant killing and novel drug combinations that can overcome the resistance of other cancer types.
References
- Lalaoui N, Hänggi K, Brumatti G, Chau D, Nguyen NN, Vasilikos L, Spilgies LM, Heckmann DA, Ma C, Ghisi M, Salmon JM, Matthews GM, de Valle E, Moujalled DM, Menon MB, Spall SK, Glaser SP, Richmond J, Lock RB, Condon SM, Gugasyan R, Gaestel M, Guthridge M, Johnstone RW, Munoz L, Wei A, Ekert PG, Vaux DL, Wong WW & Silke J. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell .2016; 29: 145-158. PMID: 26859455
- Brumatti G, Ma C, Lalaoui N, Nguyen NY, Navarro M, Tanzer MC, Richmond J, Ghisi M, Salmon JM, Silke N, Pomilio G, Glaser SP, de Valle E, Gugasyan R, Gurthridge MA, Condon SM, Johnstone RW, Lock R, Salvesen G, Wei A, Vaux DL, Ekert PG & Silke J. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci Transl Med .2016; 8: 339ra69. PMID: 27194727
Team members
Dr Gabriela Brumatti, Dr Najoua Lalaoui
Can inhibition of necroptosis limit or reduce inflammatory diseases?
Using laboratory models of psoriasis and systemic inflammation we have shown that genetic loss of the key necroptosis effectors RIPK3 and MLKL significantly attenuates many aspects of the disease.
Working with other divisions at the institute, we have discovered novel small molecular inhibitors of necroptosis which we are now testing in this and other disease models.
References
- Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier JM, Dobson RCJ, Webb AI, Tripaydonis A, Babon JJ, Mulcair MD, Scanlon MJ, Alexander WS, Wilks AF, Czabotar PE, Lessene G, Murphy JM, Silke J. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15072-7 PMID: 25288762
- Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 2014 May 22;157(5):1175-88. PMID: 24813849
Team member
Dr Joanne Hildebrand
What role do IAPs and RIPK kinases play in generating an inflammatory response?
We have shown that IAPs and RIPK2 play an important role in regulating signalling from NOD receptors, essential intracellular receptors that detect and respond to bacterial products. We are exploring a small molecule approach to explore this pathway and with collaborators at the institute we have developed and characterised a new RIPK2 inhibitor.
This has a fascinating mode of action: it delays signalling events such as NF-κB activation by only an hour or less, but completely inhibits the production of inflammatory cytokines by this pathway. We are exploring this further with mass spectrometry approaches.
Reference
- Nachbur U, Stafford CA, Bankovacki A, Zhan Y, Lindqvist LM, Fiil BK, Khakham Y, Ko HJ, Sandow JJ, Falk H, Holien JK, Chau D, Hildebrand J, Vince JE, Sharp PP, Webb AI, Jackman KA, Mühlen S, Kennedy CL, Lowes KN, Murphy JM, Gyrd-Hansen M, Parker MW, Hartland EL, Lew AM, Huang DC, Lessene G & Silke J. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nat Commun .2015; 6: 6442. PMID: 25778803
Team member
Dr Ueli Nachbur
How does the master regulator of inflammation, TNF, perform its role?
cIAPs and RIPK1 play important roles in regulating the signalling outcome downstream of TNF/TNFR1 activation. We have a long-standing interest in understanding how they function in this role, using a combination of genetics, small molecule inhibitor and mass spectrometry approaches.
More recently we have expanded our purview of this fascinating signalling paradigm by exploring the role of other regulators of this pathway including the linear ubiquitin assembly complex comprising the proteins SHARPIN, HOIL-1 and HOIP.
Reference
- Feltham R, Webb AI, Silke J. SPATA2 - Keeping the TNF signal short and sweet. EMBO J .2016 PMID: 27470000