- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Alyssa Barry
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Daniel Gray
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeanne Tie
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Matthew Ritchie
- Associate Professor Melissa Call
- Associate Professor Melissa Davis
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Peter Czabotar
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Sandra Nicholson
- Associate Professor Seth Masters
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Kelly Rogers
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Shabih Shakeel
- Dr Shalin Naik
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Mark Eaton
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Lew
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marc Pellegrini
- Professor Marco Herold
- Professor Marnie Blewitt
- Professor Melanie Bahlo
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sant-Rayn Pasricha
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A new regulator of 'stemness' to create dendritic cell factories for immunotherapy
- Advanced imaging interrogation of pathogen induced NETosis
- Cancer driver deserts
- Cryo-electron microscopy of Wnt signalling complexes
- Deciphering the heterogeneity of breast cancer at the epigenetic and genetic levels
- Developing drugs to block malaria transmission
- Developing new computational tools for CRISPR genomics to advance cancer research
- Developing novel antibody-based methods for regulating apoptotic cell death
- Discovering novel paradigms to cure viral and bacterial infections
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Do membrane forces govern assembly of the deadly apoptotic pore?
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- E3 ubiquitin ligases in neurodegeneration, autoinflammation and cancer
- Engineering improved CAR-T cell therapies
- Epigenetic biomarkers of tuberculosis infection
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- Genomic rearrangement detection with third generation sequencing technology
- How does DNA damage shape disease susceptibility over a lifetime?
- How does DNA hypermutation shape the development of solid tumours?
- How platelets prevent neonatal stroke
- Human lung protective immunity to tuberculosis
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigating the role of dysregulated Tom40 in neurodegeneration
- Investigating the role of mutant p53 in cancer
- Lupus: proteasome inhibitors and inflammation
- Machine learning methods for somatic genome rearrangement detection
- Malaria: going bananas for sex
- Measurements of malaria parasite and erythrocyte membrane interactions using cutting-edge microscopy
- Measuring susceptibility of cancer cells to BH3-mimetics
- Minimising rheumatic adverse events of checkpoint inhibitor cancer therapy
- Mutational signatures of structural variation
- Naturally acquired immune response to malaria parasites
- Predicting the effect of non-coding structural variants in cancer
- Revealing the epigenetic origins of immune disease
- Reversing antimalarial resistance in human malaria parasites
- Structural and functional analysis of DNA repair complexes
- Targeting human infective coronaviruses using alpaca antibodies
- Towards targeting altered glial biology in high-grade brain cancers
- Uncovering the real impact of persistent malaria infections
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding how malaria parasites sabotage acquisition of immunity
- Understanding malaria infection dynamics
- Understanding the mechanism of type I cytokine receptor activation
- Unveiling the heterogeneity of small cell lung cancer
- Using alpaca antibodies to understand malaria invasion and transmission
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to cross the blood brain barrier for drug delivery
- Using structural biology to understand programmed cell death
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Lilly Backshell
- Megan Kent
- Naomi Jones
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Wayne Cawthorne
- Wil Lehmann
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- WEHI.TV
Cell death

Cell death is an important process in the body as it promotes the removal of unwanted cells. Failure of cells to die, or cells dying when they shouldn’t, can lead to or exacerbate many diseases.
Our research into how and why cells die is leading to new approaches to treating these conditions.
Cell death research at the Institute
Our cell death researchers are:
- Defining how cell death occurs, and how it is regulated.
- Discovering how cell death impacts diseases including cancer and inflammatory conditions.
- Developing treatments that modify the function of cell death proteins, as new treatments for disease.
Why do cells die?
Cell death is an important process in the body. It removes cells in situations including:
- When cells are not needed, such as during certain stages of development.
- To create a structure in the body, for example, the outer layer of the skin is made of dead cells.
- To remove excess cells, such as white blood cells after an infection has been cleared.
- If cells are damaged, such as by radiation or toxins.
- When cells are infected by viruses.
How do cells die?
Cells can die because they are damaged, but most cells die by killing themselves.
There are several distinct ways in which a cell can die. Some occur by an organised, ‘programmed’ process. Some cell death processes leave no trace of the dead cell, whereas others activate the immune system with substances from the dead cell.
Apoptosis: is a form of cell death that prevents immune activation. Apoptotic cells have a particular microscopic appearance. The cell activates proteins called caspases that are normally dormant. These caspases dismantle the cell from within. The apoptotic cell breaks into small packages that can be engulfed by other cells. This prevents the cell contents leaking out of the dying cell and allows the components to be recycled.
Necrosis: occurs when a cell dies due to lack of a blood supply, or due to a toxin. The cells’ contents can leak out and damage neighbouring cells, and may also trigger inflammation.
Necroptosis: is similar in appearance to necrosis, in that the dying cell’s contents can leak out. However, like apoptosis, necroptosis is a programmed suicide process triggered by specific proteins in the dying cell.
Pyroptosis: is a form of cell death that occurs in some cells infected with certain viruses or bacteria. A cell dying by pyroptosis releases molecules, called cytokines, that alert neighbouring cells to the infection. This triggers inflammation, a protective response that restricts the spread of the viruses and bacteria.
Cell death proteins
Many proteins have been discovered that control whether a cell dies by the processes of apoptosis, necroptosis or pyroptosis. Some key cell death control proteins include:
Caspases: these enzymes are switched on in apoptotic cells, and digest other proteins to bring about cell death. Some caspases have roles in processes other than cell death.
Bcl-2 family proteins: these proteins interact with each other to determine whether a cell undergoes apoptosis or stays alive. Some Bcl-2 family proteins promote survival, and block apoptosis. Others are ‘pro-death’, and trigger apoptosis.
Death receptors: these are proteins on the surface of the cell. When they are bound by certain cytokines (hormone-like signalling proteins), they cause changes in the cell that can lead to cell death.
RIP kinases: two proteins called ‘RIP1 kinase’ and ‘RIP3 kinase’ trigger necroptosis.
IAPs: or ‘inhibitor of apoptosis proteins’ can prevent cell death. They can do this by blocking several cell death proteins including caspases and RIP1 kinase.
SMAC/Diablo: is an inhibitor of IAPs. In healthy cells, SMAC is stored away from IAPs, in parts of the cell called mitochondria. When cell death is triggered, SMAC can leak out and block IAPs function. Thus, the release of SMAC out of mitochondria can promote cell death.
How does cell death impact health?
Many diseases are associated with abnormal cell death. Some examples of this are:
Cancer |
Cancer cells often resist cell death, even after anti-cancer treatment. |
Autoimmunity |
Immune cells that attack the body’s own tissues normally die. If this cell death does not occur it can cause diseases such as lupus or type 1 diabetes. |
Viral infection |
Viruses need to keep a cell alive in order to reproduce. Cell death can therefore prevent viral replication. |
Heart attack |
Many cells, including those in the heart and brain, trigger their apoptosis machinery when they lose their blood supply. |
New medicines targeting cell death
Understanding how proteins such as the Bcl-2 family control cell death has led to the development of new drugs to block their function. These have the potential to cause the death of cancer cells, or the immune cells that cause autoimmune disease.
One set of drugs, called ‘BH3 mimetics’ trigger apoptotic cell death. They do so by preventing the action of ‘pro-survival’ Bcl-2 family proteins. Unless blocked, these pro-survival proteins help cancer cells stay alive, even after anti-cancer treatments such as chemotherapy.
Clinical trials are underway to determine whether BH3 mimetics can be used to treat certain cancers. BH3-mimetics might also potentially help treat autoimmune diseases by killing disease-causing white blood cells.
SMAC-mimetics are agents that, like the SMAC protein, enhance cell death. They do this by stopping IAPs from blocking cell death. They might also be able to help cells die so that chronic viral infections can be cleared.
There is also considerable interest in agents that can prevent cell death. These could have applications for treating conditions in which there is unwanted cell death, such as stroke, heart attack or neurodegenerative disorders.
Researchers:
Our researchers have discovered a promising strategy for treating cancers that are caused by one of the most common cancer-causing changes in cells.
Our research has revealed the structure of a protein that triggers a form of programmed cell death called necroptosis