- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Epigenetics

Epigenetics explains how cells are able to use different parts of their DNA at different times. Epigenetic modifications made to our DNA underpin many important processes in our bodies, and can be corrupted in disease.
Our epigenetics researchers aim to unravel how epigenetic changes influence healthy and diseased cells, with a goal of better treatments for diseases.
Our epigenetics research
Our research in the field of epigenetics aims to:
- Discover new proteins that either package or epigenetically modify our DNA.
- Reveal how epigenetic changes control the development and function of different cell types in health and disease.
- Develop new strategies that treat disease by altering the epigenetic control of genes.
What is epigenetics?
Epigenetics examines how our body manages to create all of our different cell types – such as white blood cells, muscle cells and skin cells – from the same genetic code. It studies how chemical changes, called ‘epigenetic modifications’ switch genes on or off.
Our genome, made of DNA, contains the instructions for how our cells behave. Different cells in our body function in distinct ways because of variations in the proteins made by each cell. The proteins are produced under instruction from genes. Switching different genes on or off affects which particular proteins are produced. For example, red blood cells produce haemoglobin to transport oxygen, whereas skin cells make elastin to keep our skin elastic.
DNA consists of four ‘letters’ called bases. It is the sequence of bases that makes the instructions within genes. Changes in the order of the bases changes the proteins that are produced.
Epigenetic modifications are chemical changes to DNA and to certain proteins, called histones, that DNA wraps around. The DNA and histones together are called ‘chromatin’.
Chemical changes influence whether the chromatin is:
- ‘Open’ or packed loosely, allowing genes to be active, or
- ‘Closed’ or packed tightly, inactivating the genes.
Epigenetic modifications are reversible: a cell can switch off a gene at one point in time, and switch it back on later. The trigger to open or close a particular section of DNA can be:
- An external signal received by the cell, such as a hormone binding to a receptor, or a change in a nutrient.
- An internal change in the cell, such as the cell preparing to divide.
When a cell divides, the ‘parent’ cell’s epigenetic state can be maintained in the daughter cells. This means that a trigger at one point in time can influence how a cell behaves at a later time. It also means that when a certain type of cell divides it produces another cell of the same type. Thus, a liver cell divides into two liver cells, not into any other type of cell.
The environment can also influence epigenetic modifications. In particular, it appears that changes to a mother’s diet are experienced by the developing foetus, and can influence how epigenetic modifications are established during development in the womb. This can influence the disease sensitivities of the person into adulthood.
Epigenetic modifiers
The proteins that make epigenetic changes to chromatin are called ‘epigenetic modifiers’. These include:
- Histone acetyltransferases (HATs), histone methyltransferases and histone deacetylases (HDACs) and histone demethylases that modify histone proteins.
- DNA methyltransferases, which modify certain bases in DNA, and a set of proteins including TET proteins that undo these modifications.
Discovering new epigenetic modifiers is a goal of our epigenetics research.
X-inactivation
Male and female mammals differ at the genetic level:
- Female cells contain two X chromosomes.
- Male cells contain one X and one Y chromosome.
Having two X chromosomes active within a cell is toxic. Therefore, during development female cells apply epigenetic changes to permanently close down all the genes on one X chromosome. This process is called ‘X-inactivation’.
Our researchers are using X-inactivation as a model of epigenetic changes, to discover new ways that genes are switched on and off.
Epigenetics and development
Epigenetic changes explain how one cell can give rise to the complex mix of cells in an adult. During embryonic development, different genes are required at different times, and in different cells. Epigenetic modifications are critical for instructing a cell on which genes it should be using.
Epigenetics and disease
Diseases can occur because of errors within cells. Some of these can be traced to certain changes in the cell’s DNA sequence. It is becoming apparent that specific epigenetic modification in a cell can underlie certain diseases. Our researchers are examining this hypothesis in a number of important conditions including cancer.
Epigenetic changes that alter gene expression occur in cancer cells. These enable the cell to divide uncontrollably and become long lived. Some cancer-causing gene mutations have been found in epigenetic modifiers.
Epigenetic cancer therapies
Epigenetic changes to chromatin can enable the growth of a cancer but, unlike genetic mistakes, these epigenetic changes are reversible. Medications that alter a cancer cell’s epigenetic state have been developed. These interfere with epigenetic modifiers such as the HDACs and DNA methyltransferases. Some of these medications are already in use to treat blood cancers, and are being tested in other cancers.
As research reveals more about epigenetics in health and disease, more strategies to treat disease by altering a diseased cell’s epigenetic state will be developed.
Researchers:
The Human Genome program revealed that it takes 30,000 genes to make a human. But thats not the full story. Marnie Blewitt wants to know more, "How does a cell know which of its 30,000 or so genes should be active and which should be dormant?" she asks.
Coursera course: This course covers the principles of epigenetic control of gene expression, how epigenetic control contributes to cellular differentiation and development, and how it goes wrong in disease.
The discovery of a ‘switch’ that modifies a gene known to be essential for normal heart development could explain variations in the severity of birth defects in children with DiGeorge syndrome.