- About
- Strategic Plan
- Structure
- Governance
- Scientific divisions
- ACRF Cancer Biology and Stem Cells
- ACRF Chemical Biology
- Advanced Technology and Biology
- Bioinformatics
- Blood Cells and Blood Cancer
- Clinical Translation
- Epigenetics and Development
- Immunology
- Infectious Diseases and Immune Defence
- Inflammation
- Personalised Oncology
- Population Health and Immunity
- Structural Biology
- Ubiquitin Signalling
- Laboratory operations
- Funding
- Annual reports
- Human research ethics
- Scientific integrity
- Institute life
- Career opportunities
- Business Development
- Collaborators
- Suppliers
- Publications repository
- Awards
- Discoveries
- Centenary 2015
- History
- Contact us
- Research
- Diseases
- Cancer
- Development and ageing
- Immune health and infection
- Research fields
- Research technologies
- Research centres
- People
- Alistair Brown
- Anne-Laure Puaux
- Assoc Prof Joanna Groom
- Associate Profesor Ian Majewski
- Associate Professor Aaron Jex
- Associate Professor Andrew Webb
- Associate Professor Chris Tonkin
- Associate Professor Diana Hansen
- Associate Professor Edwin Hawkins
- Associate Professor Ethan Goddard-Borger
- Associate Professor Gemma Kelly
- Associate Professor Grant Dewson
- Associate Professor Isabelle Lucet
- Associate Professor James Vince
- Associate Professor Jason Tye-Din
- Associate Professor Jeff Babon
- Associate Professor Joan Heath
- Associate Professor John Wentworth
- Associate Professor Justin Boddey
- Associate Professor Kate Sutherland
- Associate Professor Kelly Rogers
- Associate Professor Marie-Liesse Asselin-Labat
- Associate Professor Melissa Call
- Associate Professor Misty Jenkins
- Associate Professor Nawaf Yassi
- Associate Professor Oliver Sieber
- Associate Professor Rachel Wong
- Associate Professor Rhys Allan
- Associate Professor Rosie Watson
- Associate Professor Ruth Kluck
- Associate Professor Shalin Naik
- Associate Professor Sumitra Ananda
- Associate Professor Tim Thomas
- Associate Professor Tracy Putoczki
- Chela Niall
- Deborah Carr
- Dr Alisa Glukhova
- Dr Anna Coussens
- Dr Ashley Ng
- Dr Belinda Phipson
- Dr Ben Tran
- Dr Bernhard Lechtenberg
- Dr Brad Sleebs
- Dr Drew Berry
- Dr Gwo Yaw Ho
- Dr Hamish King
- Dr Hui-Li Wong
- Dr Jacqui Gulbis
- Dr Jim Whittle
- Dr Lucy Gately
- Dr Margaret Lee
- Dr Mary Ann Anderson
- Dr Maryam Rashidi
- Dr Matthew Call
- Dr Nadia Davidson
- Dr Nadia Kershaw
- Dr Philippe Bouillet
- Dr Rebecca Feltham
- Dr Rory Bowden
- Dr Samir Taoudi
- Dr Sarah Best
- Dr Saskia Freytag
- Dr Shabih Shakeel
- Dr Sheau Wen Lok
- Dr Stephin Vervoort
- Dr Yunshun Chen
- Guillaume Lessene
- Helene Martin
- Joh Kirby
- Kaye Wycherley
- Keely Bumsted O'Brien
- Mr Simon Monard
- Mr Steve Droste
- Ms Carolyn MacDonald
- Professor Alan Cowman
- Professor Andreas Strasser
- Professor Andrew Roberts
- Professor Anne Voss
- Professor Clare Scott
- Professor Daniel Gray
- Professor David Huang
- Professor David Komander
- Professor David Vaux
- Professor Doug Hilton
- Professor Geoff Lindeman
- Professor Gordon Smyth
- Professor Ian Wicks
- Professor Ivo Mueller
- Professor James McCarthy
- Professor James Murphy
- Professor Jane Visvader
- Professor Jeanne Tie
- Professor Jerry Adams
- Professor John Silke
- Professor Ken Shortman
- Professor Leanne Robinson
- Professor Leonard C Harrison
- Professor Lynn Corcoran
- Professor Marnie Blewitt
- Professor Matthew Ritchie
- Professor Melanie Bahlo
- Professor Melissa Davis
- Professor Mike Lawrence
- Professor Nicos Nicola
- Professor Peter Colman
- Professor Peter Czabotar
- Professor Peter Gibbs
- Professor Phil Hodgkin
- Professor Sandra Nicholson
- Professor Sant-Rayn Pasricha
- Professor Seth Masters
- Professor Stephen Nutt
- Professor Suzanne Cory
- Professor Terry Speed
- Professor Tony Papenfuss
- Professor Wai-Hong Tham
- Professor Warren Alexander
- Diseases
- Education
- PhD
- Honours
- Masters
- Clinician-scientist training
- Undergraduate
- Student research projects
- A multi-pronged approach to targeting myeloproliferative neoplasms
- A new paradigm of machine learning-based structural variant detection
- A whole lot of junk or a treasure trove of discovery?
- Advanced imaging interrogation of pathogen induced NETosis
- Analysing the metabolic interactions in brain cancer
- Atopic dermatitis causes and treatments
- Boosting the efficacy of immunotherapy in lung cancer
- Building a cell history recorder using synthetic biology for longitudinal patient monitoring
- Characterisation of malaria parasite proteins exported into infected liver cells
- Deciphering the heterogeneity of the tissue microenvironment by multiplexed 3D imaging
- Defining the mechanisms of thymic involution and regeneration
- Delineating the molecular and cellular origins of liver cancer to identify therapeutic targets
- Developing computational methods for spatial transcriptomics data
- Developing drugs to block malaria transmission
- Developing models for prevention of hereditary ovarian cancer
- Developing statistical frameworks for analysing next generation sequencing data
- Development and mechanism of action of novel antimalarials
- Development of novel RNA sequencing protocols for gene expression analysis
- Discoveries in red blood cell production and function
- Discovering epigenetic silencing mechanisms in female stem cells
- Discovery and targeting of novel regulators of transcription
- Dissecting host cell invasion by the diarrhoeal pathogen Cryptosporidium
- Dissecting mechanisms of cytokine signalling
- Doublecortin-like kinases, drug targets in cancer and neurological disorders
- Epigenetic biomarkers of tuberculosis infection
- Epigenetics – genome wide multiplexed single-cell CUT&Tag assay development
- Exploiting cell death pathways in regulatory T cells for cancer immunotherapy
- Exploiting the cell death pathway to fight Schistosomiasis
- Finding treatments for chromatin disorders of intellectual disability
- Functional epigenomics in human B cells
- How do nutrition interventions and interruption of malaria infection influence development of immunity in sub-Saharan African children?
- Human lung protective immunity to tuberculosis
- Improving therapy in glioblastoma multiforme by activating complimentary programmed cell death pathways
- Innovating novel diagnostic tools for infectious disease control
- Integrative analysis of single cell RNAseq and ATAC-seq data
- Interaction with Toxoplasma parasites and the brain
- Interactions between tumour cells and their microenvironment in non-small cell lung cancer
- Investigation of a novel cell death protein
- Malaria: going bananas for sex
- Mapping spatial variation in gene and transcript expression across tissues
- Mechanisms of Wnt secretion and transport
- Multi-modal computational investigation of single-cell communication in metastatic cancer
- Nanoparticle delivery of antibody mRNA into cells to treat liver diseases
- Naturally acquired immune response to malaria parasites
- Organoid-based discovery of new drug combinations for bowel cancer
- Organoid-based precision medicine approaches for oral cancer
- Removal of tissue contaminations from RNA-seq data
- Reversing antimalarial resistance in human malaria parasites
- Role of glycosylation in malaria parasite infection of liver cells, red blood cells and mosquitoes
- Screening for novel genetic causes of primary immunodeficiency
- Single-cell ATAC CRISPR screening – Illuminate chromatin accessibility changes in genome wide CRISPR screens
- Spatial single-cell CRISPR screening – All in one screen: Where? Who? What?
- Statistical analysis of single-cell multi-omics data
- Structural and functional analysis of epigenetic multi-protein complexes in genome regulation
- Structural basing for Wnt acylation
- Structure, dynamics and impact of extra-chromosomal DNA in cancer
- Targeted deletion of disease-causing T cells
- Targeting cell death pathways in tissue Tregs to treat inflammatory diseases
- The cellular and molecular calculation of life and death in lymphocyte regulation
- The role of hypoxia in cell death and inflammation
- The role of ribosylation in co-ordinating cell death and inflammation
- Understanding Plasmodium falciparum invasion of red blood cells
- Understanding cellular-cross talk within a tumour microenvironment
- Understanding the genetics of neutrophil maturation
- Understanding the roles of E3 ubiquitin ligases in health and disease
- Unveiling the heterogeneity of small cell lung cancer
- Using combination immunotherapy to tackle heterogeneous brain tumours
- Using intravital microscopy for immunotherapy against brain tumours
- Using nanobodies to understand malaria invasion and transmission
- Using structural biology to understand programmed cell death
- Validation and application of serological markers of previous exposure to malaria
- School resources
- Frequently asked questions
- Student profiles
- Abebe Fola
- Andrew Baldi
- Anna Gabrielyan
- Ashley Weir
- Bridget Dorizzi
- Casey Ah-Cann
- Catia Pierotti
- Emma Nolan
- Huon Wong
- Jasmine Rou
- Jing Deng
- Joy Liu
- Kaiseal Sarson-Lawrence
- Komal Patel
- Krishneel Prasa
- Lilly Backshell
- Malvika Kharbanda
- Megan Kent
- Naomi Jones
- Pailene Lim
- Rebecca Delconte
- Roberto Bonelli
- Rune Larsen
- Runyu Mao
- Sarah Garner
- Simona Seizova
- Sophie Collard
- Wayne Cawthorne
- Wil Lehmann
- Yanxiang Meng
- Zhong Yan Gan
- Miles Horton
- Alexandra Gurzau
- Student achievements
- Student association
- Learning Hub
- News
- Donate
- Online donation
- Ways to support
- Support outcomes
- Supporter stories
- Rotarians against breast cancer
- A partnership to improve treatments for cancer patients
- 20 years of cancer research support from the Helpman family
- A generous gift from a cancer survivor
- A generous vision for impactful medical research
- A gift to support excellence in Australian medical research
- An enduring friendship
- Anonymous donor helps bridge the 'valley of death'
- Philanthropy through the power of sisterhood
- Renewed support for HIV eradication project
- Searching for solutions to muscular dystrophy
- Supporting research into better treatments for colon cancer
- Taking a single cell focus with the DROP-seq
- Donors
- WEHI.TV
Haematology

Abnormal production and function of blood cells underlies many human diseases.
Our haematology research seeks to understand blood cell formation and function in health and disease in order to develop better treatments for blood disorders.
Haematology research at the Institute
Our haematology researchers:
- Define molecules controlling blood cell development and function.
- Identify how blood cell abnormalities lead to diseases such as leukaemia, lymphoma, myeloproliferative disorders and myelodysplasia.
- Identify new strategies to treat blood diseases.
What is haematology?
Haematology is the study of blood and blood cell production and function in health and disease.
Healthy blood is composed of blood cells and the plasma (liquid) in which they circulate. There are three main cellular components of blood:
- Red cells, which carry oxygen and are the most numerous cells in blood.
- Platelets, tiny cells that coordinate the control of bleeding
- White cells, which fight infections.
Nearly half the volume of our blood is made of blood cells with the rest being plasma.
Plasma is the solution that carries our blood cells around our body. Dissolved proteins in plasma also have many important functions. These include:
- Maintaining the right amount of water in our blood, by preventing it from leaking out of our blood vessels.
- Fighting infection (through immune proteins called antibodies).
- Binding and carrying nutrients to cells and removing waste products.
- Carrying signals (hormones) around the body.
- Allowing blood clots to form in close collaboration with blood platelets when bleeding occurs.
Defects in blood cells or plasma proteins can be associated with many human diseases.
How are blood cells formed?
In an adult, blood cells are produced by stem cells in the bone marrow. One blood stem cell can produce all the blood cells in our system.
Progenitor cells develop from stem cells. They expand and mature, becoming much more specialised in their functions while becoming limited in the types of mature blood cells they produce. The two main types of progenitor cells are:
- Lymphoid progenitor cells, which develop into white blood cells called lymphocytes and other cells involved in the adaptive (specialised) immune system.
- Myeloid progenitor cells, which develop into non-lymphocyte white blood cells such as neutrophils, as well as red blood cells, and megakaryocytes (which form platelets).
All blood cells start with the same genetic code (genome), but as the cells develop, different genes switch on and off. This highly regulated process controls the protein machinery a blood cell makes and, ultimately, how a blood cell behaves and functions.
This highly regulated switching on and off of specific blood cell genes explains how different blood cells have vastly different functions within the body.
Our researchers have identified a detailed ‘road map’ of gene expression in blood cells which maps out which genes are turned on or off at every stage of blood cell development.
Colony stimulating factors
The growth, survival and function of blood cells are critically controlled by proteins, called cytokines, that are dissolved in the plasma. A large number of cytokines regulate a cell’s decision to become one blood cell type or another. Cytokines also regulate cells’ responses to emergencies such as bleeding or infection.
One particularly important class of cytokines involved in blood cell development is the colony stimulating factors. Colony stimulating factors (CSFs) were discovered at the Walter and Eliza Hall Institute by Professor Donald Metcalf in collaboration with Dr Ray Bradley from The University of Melbourne.
Colony stimulating factors have many functions including:
- Directing blood progenitors to form different types of white blood cells.
- Instructing blood cells to divide
- Regulating white blood cell function.
Colony stimulating factors are now used routinely to treat patients undergoing chemotherapy or in bone marrow transplantation.
Diseases of the blood
Abnormal blood cell production or function can cause many diseases. Understanding how these occur can lead to new strategies for treatment of these diseases.
Blood cell deficiencies
If too few blood cells are produced or excessive blood cells are lost, such as through bleeding, problems arise from the resultant blood cell deficiencies. These include:
- Anaemia, where too few red blood cells leads to problems such as tiredness, lethargy and blood circulation problems.
- Leukopenia, where too few white cells leads to immunodeficiency, increasing the risk of infection.
- Thrombocytopenia, where having too few platelets increases the risk of bleeding.
Blood cell cancers
The production of too many blood cells or uncontrolled growth of abnormal blood cells is the basis of blood cancers.
- Leukaemias are diseases in which an abnormal number of immature blood cells are produced in the bone marrow and can be detected circulating in the blood.
- Lymphomas are diseases in which abnormal lymphocytes grow, causing swelling of lymphocyte-containing tissues such as the lymph nodes or spleen.
- Myeloproliferative diseases, a range of conditions in which too many mature blood cells are produced. This leads to problems with blood circulation, and an increased risk of developing an aggressive leukaemia.
Blood clotting problems
Bleeding occurs when there is a breach of a blood vessel. Blood clotting is the important response creating a clot that plugs the wound to stop the blood vessel from bleeding. Clots are composed of:
- Platelets, which initiate and coordinate blood clotting.
- Clotting factors, which are soluble proteins in the blood that are converted into an ‘insoluble’ fibrin mesh to stabilise a blood clot.
Within a clot, platelets are critical for sending signals and triggering clot formation and wound repair. Some of these signals may also attract immune cells to the injured area, and instruct them to be ready to fight potential infection.
Several diseases are associated with problems of platelets or clotting factors.
Deficiencies or abnormalities in the function of platelets or clotting factors can lead to excessive bleeding. Examples of this include:
- Thrombocytopaenia, meaning a lack of platelets, can predispose to excessive bleeding.
- Haemophilia, in which a particular clotting factor is not produced, impeding clot formation.
Excessive numbers of platelets or an imbalance of clotting and anti-clotting factors can cause blood clots to form and block blood vessels to critical organs.
Some diseases that involve problems with blood clotting include:
- Essential thrombocythemia, a myeloproliferative disease, in which too many platelets are produced, causing a tendency to excessive clotting.
- Thrombophilia, in which an imbalance of clotting and anti-clotting proteins creates a predisposition to clot formation.
- Stroke, in which a blood clot can block the blood supply to the brain.
- Acute myocardial infarction (heart attack), in which a blood clot blocks supply to a heart blood vessel.
Blood donation and blood stem cell transplantation
Several blood cell deficiencies (such as anaemia, thrombocytopenia, and, occasionally, leukopenia) and blood clotting disorders (such as haemophilia) can be treated by replacing the missing blood component.
In all situations requiring blood cell replacement, the missing blood component comes from healthy volunteer donors. Missing plasma protein components can also be replaced by plasma from healthy volunteer donors. Recently genetic technology has been used to produce particular blood proteins.
In circumstances where a patient’s bone marrow stem cells need to be replaced, a specialised medical procedure called a bone marrow transplant can be undertaken. This replaces the bone marrow of the patient (bone marrow transplant recipient) with the stem cells that had been previously collected from the patient, or from a volunteer donor (bone marrow donor).
Haematologists are doctors who specialise in blood disorders and blood disease therapy.
Researchers:
Our researchers have discovered how an essential blood-making hormone stimulates platelet production
Animation explaining how DNA changes lead to the blood disease sickle cell anaemia
Our research has resolved a longstanding debate about the formation of platelets, tiny cells that allow blood to clot.
Professor Andrew Roberts discusses the results of a clinical trial of a potential new anti-cancer agent on ABC Radio.