Biomarkers of regulatory T cells and disease risk

- Regulatory T cells (Tregs) play a pivotal role in maintaining immune homeostasis
- Potential use as biomarkers of immune status in autoimmune and inflammatory diseases and cancer

Lead scientists

Walter and Eliza Hall Institute
- Professor Len Harrison, MD, PhD
 - Laboratory head, Molecular Medicine division
- Yuxia Zhang, PhD
 - Senior Postdoctoral Fellow, Molecular Medicine division

Murdoch Childrens Research Institute
- Alicia Oshlack, PhD
 - Laboratory Head, Bioinformatics
- Jovana Maksimovic, PhD
 - Research Officer, Bioinformatics

The opportunity

Autoimmune diseases are one of the most important health issues in the world - over 80 autoimmune diseases have been described, and there are estimated to be over 23 million sufferers in the USA alone. Examples of autoimmune diseases include type 1 diabetes, rheumatoid arthritis and multiple sclerosis.

Regulatory T cells (Tregs) are critical in the maintenance of immune cell homeostasis and play a pivotal role in preventing autoimmune diseases. Tregs maintain order in the immune system by enforcing suppression of other immune cells (e.g. effector T cells). When Tregs are unable to provide this protection, autoimmune diseases can develop.

Current therapies for autoimmune diseases: (i) are varied depending on the stage of disease; (ii) relieve only some of the symptoms; and (iii) can have serious side effects particularly if used long term (due to their non-specific immunosuppressive function). Early or pre-symptomatic detection of an increased risk for immune system dysfunction as assessed by Treg activity potentially provides a powerful tool to facilitate clinical management of autoimmune diseases.

Researchers at the Walter and Eliza Hall Institute and the Murdoch Childrens Research Institute have identified a novel methylation signature of Tregs, which may serve as biomarkers of autoimmune diseases.

The technology

To identify distinguishing features of Tregs, one focus of the scientific team was the epigenetic landscape. Global DNA methylation profiling was conducted, seeking to identify differentially methylated CpGs between human naïve Tregs and Naïve T cells, before and after activation in vitro.

The researchers detected 2,315 individual differentially methylated probes comprising 127 regions of differential methylation. To validate these findings, the locus of TIGIT, a known suppressive receptor expressed by Tregs, was examined. In general, it is thought that a reciprocal relationship exists between methylation and gene expression. The scientific team discovered that the TIGIT locus was: (i) one of the most significantly differentially methylated regions; and (ii) was hypomethylated.

This suggests the 2,315 differentially methylated CpGs and the nearby regions, as well as the 127 regions of differential methylation can be used as biomarkers of Treg activity.
Applications
The present technology can be applied in diagnostic, prognostic, agent-screening and therapeutic protocols, as well as reporting systems:

- Method of identifying the level of T-regulatory cell activity in a test biological sample comprising immune cells
- Method of determining whether or not a subject has or is at risk of developing an autoimmune condition
- Method of treatment or prophylaxis of a subject
- Method of screening for an agent which modulates immune cell function

Intellectual property
The intellectual property is protected by a provisional application that protects assays identifying the level of immune cell activity in a biological sample, based upon methylation profiles of a pre-selected genetic locus/loci/regions.

Opportunity for partnership
The Walter and Eliza Hall Institute and Murdoch Childrens Research Institute are seeking:

- a partner to co-invest in the development of a diagnostic assay; and/or
- to out-license intellectual property associated with this technology

Key publications

