Development of a novel therapeutic to treat malaria

- The malaria protease, plasmepsin V, is essential for parasite survival
- Plasmepsin V is a novel druggable target
- Campaign to develop potent drug-like inhibitors of Plasmepsin V

Scientific team

- Justin Boddey, PhD
 - Laboratory Head, Infection and Immunity division
- Brad Sleebs, PhD
 - Senior Research Officer, Chemical Biology division

The opportunity

Several hundred million people are infected with malaria annually, resulting in approximately one million deaths per year, and the causation of profound social-economic problems. There is currently no vaccine, and drug resistance is rapidly increasing.

Malaria is caused by the Plasmodium parasite, the most virulent form, *P. falciparum* accounts for 70% of infections, while *P. vivax* is responsible for post-treatment symptomatic relapse and accounts for 30% of known infections. Malaria parasites survive inside human red blood cells by exporting hundreds of proteins into the erythrocyte to remodel it. Approximately 450 proteins are exported by trafficking through the parasite Endoplasmic Reticulum (ER) and possess an N-terminal export motif, termed the Plasmodium export element (PEXEL), which targets the proteins to the erythrocyte. In order for proteins to be correctly exported, the PEXEL motif must be processed by an ER-resident aspartic acid protease called Plasmepsin V (PMV). If processing of PEXEL proteins does not take place, they are not exported and accumulate inside the parasite. Thus, blocking protein export offers a potential therapeutic mechanism to prevent survival and transmission of malaria parasites.

Researchers at the Walter and Eliza Hall Institute have identified that PMV is critical for the export of proteins from the malaria parasite. As such, development of therapeutics inhibiting PMV potentially leads to novel anti-malarial therapeutics.

The technology

Institute researchers have developed probes that mimic the PEXEL substrate and are highly potent and selective inhibitors of PMV. The mimetics display potent inhibition of PMV from both *P. falciparum* and *P. vivax* with negligible off-target activity against human proteases, confirming that the export pathway is conserved in Plasmodium species and that PMV has an exquisitely refined substrate specificity. For the first time, the researchers have demonstrated that the treatment of *P. falciparum* parasites in culture with the small molecule probe causes a reduction in PEXEL processing, protein export and parasite death, reinforcing PMV as a prime anti-malarial target.

These proof-of-principle experiments have led to two projects:
- The PEXEL mimetic probe is currently being further optimised and will be used to further understand the role of PMV in liver and transmission stages of the parasites lifecycle. Currently, analogues are being synthesised and tested in vitro.

Figure 1. PMV is expressed in the ER (perinuclear) of liver stage *P. falciparum* parasites
High-throughput screening of a library of compounds that possess anti-malarial properties (~13,500) was performed to identify inhibitors of PMV. The screening cascade that was employed identified a single drug-like class of 8 compounds. Medicinal chemistry efforts have established an early structure activity relationship and are currently focusing on improving the potency of the lead class.

Applications
Malaria is a global public health burden, with worldwide infections into the hundreds of millions, and deaths of approximately one million people each year.

Opportunity for partnership
The Walter and Eliza Hall Institute is seeking a partner to co-invest in development of the drug-like series that will not only target blood stage malaria, but potentially liver and transmission stages malaria.

The ultimate goal is to develop an anti-malarial drug that possesses the appropriate potency, safety and pharmacokinetic profiles.

The institute is a world leader in malaria research and has extensive experience and expertise in the identification and characterisation of novel drug targets. Moreover, the institute has a successful track record in medicinal chemistry programmes focused on high-throughput chemical screening, hit-to-lead and lead optimisation.

Intellectual property
Compound structures have not been publicly disclosed. An opportunity exists to generate novel composition of matter intellectual property.

Key publications

Figure legend
Figure 1: PMV is expressed in the ER (perinuclear) of liver stage P. falciparum parasites. Liver sections from infected humanized mice 7 days post infection probed with antibodies to PMV (green), the PV membrane protein, EXP1 (red), and the nucleus, DAPI (blue)